STUDENT SOLUTIONS MANUAL TO ACCOMPANY

Anslyn & Dougherty's

Modern Physical Organic Chemistry

Michael B. Sponsler Syracuse University

Eric V. Anslyn University of Texas at Austin

Dennis A. Dougherty California Institute of Technology

University Science Books Sausalito, California University Science Books www.uscibooks.com

About the Cover -- Taming Cyclobutadiene: An object of physical organic investigations for decades, cyclobutadiene was finally "tamed" in 1991, when Cram and coworkers generated the molecule in the cavity of a hemicarcerand. This supramolecular complex allowed full characterization of cyclobutadiene, including recording its NMR spectrum at room temperature. See Section 4.3.3.

Text Design: Mark Ong Cover Design: Bob Ishi Compositor: Michael Sponsler Printer & Binder: Edwards Brothers

This book is printed on acid-free paper.

Copyright © 2005 by University Science Books

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, University Science Books.

ISBN 1-891389-36-X Library of Congress Control Number: 2005903713

Printed in the United States of America 10 9 8 7 6 5 4 3 2 1

Contents

To the Stude	nt	V
Part I	Molecular Structure and Thermodynamics	
Chapter 1	Introduction to Structure and Models of Bonding	1
Chapter 2	Strain and Stability	17
Chapter 3	Solutions and Non-Covalent Binding Forces	45
Chapter 4	Molecular Recognition and Supramolecular Chemistry	51
Chapter 5	Acid-Base Chemistry	64
Chapter 6	Stereochemistry	74
Part II	Reactivity, Kinetics, and Mechanisms	
Chapter 7	Energy Surfaces and Kinetic Analyses	104
Chapter 8	Experiments Related to Thermodynamics and Kinetics	121
Chapter 9	Catalysis	139
Chapter 10	Organic Reaction Mechanisms Part 1: Reactions Involving Additions and/or Eliminations	155
Chapter 11	Organic Reaction Mechanisms Part 2: Substitutions at Aliphatic Centers and Thermal Isomerizations/Rearrangements	181
Chapter 12	Organotransition Metal Reaction Mechanisms and Catalysis	207
Chapter 13	Organic Polymer and Materials Chemistry	221
Part III	Electronic Structure: Theory and Applications	
Chapter 14	Advanced Concepts in Electronic Structure Theory	234
Chapter 15	Thermal Pericyclic Reactions	283
Chapter 16	Photochemistry	310
Chapter 17	Electronic Organic Materials	331
Appendix 5	Pushing Electrons	349

To the Student

This *Solutions Manual* provides solutions (not just answers) to all end-of-chapter exercises in *Modern Physical Organic Chemistry*: nearly 600 solutions, not including multiple parts. Used properly – to compare with your own solutions – this manual will contribute tremendously to your understanding of the concepts and methods presented in the textbook. Used improperly – before you have tried the exercise on your own – its value will be marginal.

Learning physical organic chemistry, like other areas of chemistry, requires much more of you than memorization of facts. You will be expected to learn principles and ways of thinking and to apply them in various contexts to show that you can make sense of an observed product, rate constant, or pK_a value. You will also be expected to use your knowledge to make predictions and design experiments to test your predictions. Such skills cannot be learned by reading someone else's answer. You might recognize that it makes sense, and you might pick up another fact or two, but you will not have gained the valuable experience of working through the issues on your own!

Like the textbook, this *Solutions Manual* has "GOING DEEPER" highlights on selected issues – 22 in total. These are provided to explore intriguing issues that go beyond the question that is posed in the exercise. We encourage you to develop the habit of "going deeper" when you come across an interesting question that is not so simply answered or a question that leads to more questions. Physical organic chemistry is full of such opportunities to be inquisitive!

Acknowledgment

The authors would like to thank University Science Books for supporting the idea of a complete solutions manual – something new with respect to physical organic textbooks.

M. B. S. E. V. A. D. A. D.